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LETTER TO THE EDITOR 

Supersymmetric Bogomolny bounds at finite temperature 

J Casahorran 
Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 
Zaragoza, Spain 

Received 29 August 1989 

Abstract. We express the first quantum terms contributing to SUSY Bogomolny bounds at 
finite temperature. In particular the ‘collective coordinates’ treatment is mandatory in 
order to avoid an ‘infrared catastrophe’ associated with the bosonic partition function 
while the conventional saturation when T = 0 is clearly recovered. 

It is well known by now that in supersymmetric models the vacuum energy receives 
no quantum corrections. Passing to the soliton sector, Witten and Olive [ l ]  showed 
that the conventional supersymmetry algebra includes central charges with a 
Bogomolny inequality directly derived from the proper algebra. Although this 
Bogomolny bound is saturated at the classical level it is interesting to analyse whether 
the same phenomenon happens at ‘one-loop’ order. In fact, the non-vanishing of the 
first quantum correction is traced to the existence of supersymmetric violating surface 
terms in the Lagrangian. In any case, the saturation of the bound at this level appears 
as a result of the absence of spontaneous breaking of N = + SUSY in a related Lagrangian. 
The aim of this letter is to consider the finite-temperature effects over the Bogomolny 
bound. In particular we express the first quantum terms contributing to the inequality 
at finite temperature, using a ‘collective coordinates’ treatment in order to avoid an 
infrared catastrophe associated with the bosonic partition function. Moreover, the 
conventional saturation when T = 0 is clearly recovered, a result very similar to the 
one obtained within the effective potential calculations: a term associated with the 
T = 0 case and a second one which includes the finite-temperature contributions. We 
start from a general model governed by the action 

S = (4(a,4)’+$iqywd,9-f W’(4)2- iW’(4)q9)  d2x (1)  1 
where 4 is a real scalar field, while Y represents a Majorana spinor. The function 
W ( 4 )  must be chosen such that the theory admits topological classical solutions, and 
the prime denotes a derivative with respect to the argument. In fact, the classical 
solutions 4c( x )  satisfy the Bogomolny equation 

-- d4c(x) - f W’[  4c(x)] 
dx 

with a classical mass for the extended object obtained easily using ( 2 )  

+f W‘(4c)2 dx = 1 W(+oo) - W(-oo)\. 1 (3) 
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If we shift the global field by the classical solution &(x), i.e. b ( x )  = &(x) + cp(x), 
these bosonic fluctuations q(x)  obey the equation 

Writing the spinor in its two-component form 

we obtain the following coupled equations 

Q+u- = i -+ W”(&) u-(x) = -wFu+(x) ( 6 a )  

(6b) 

C X  ) 
*+ = i( &- ~ ( 4 ~ )  u+(x) = -wFu-(x) ) 

which, using the hidden SUSY quantum mechanics character of the Dirac equation 
over the background provided by &(x), yield 

so that one of the fermionic components (it depends on the sign of (2)) satisfies the 
bosonic fluctuations, equation (4). With these data at hand, the first quantum correction 
to the mass is given by 

1 
2 

AM =-C (oB-wF). 

Moreover, the conventional supersymmetry algebra which corresponds to (1) is 
modified by the emergence of central charges, namely [2] 

{QaV O f i I = - 2 ~ E f i P ~ + i i , T  a, p = 1,2 (9) 
with 

In fact, T i s  different from zero only over the topological sectors of the theory and 
when evaluated at the classical level represents twice the mass (see (3)). If we take 
the rest frame, P, = ( M ,  0) the SUSY algebra adopts the form 

Q:=2M-T (110) 

Q : = 2 M + T  ( I l b )  

(91 , 9 2 )  = 0 

M 241~1. (12) 

( I l c )  
from which the quantum Bogomolny bound is easily derived 
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Now our attention is devoted to the analysis of (12) when the effects associated 
with the finite-temperature case are included. Starting from the energy contributions, 
the assumption is made that the conventional quantum fields cp and * are to be 
described as systems in thermodynamical equilibrium at finite temperature T = 1 /p  
(Boltzmann constant kB = 1). Then the thermodynamics of the system is given by the 
partition function where its logarithm provides the Helmholtz thermodynamic potential 
[3]. Taking the wB (wF) bosonic (fermionic) eigenvalues over the background 4c(x), 
we pass to the respective partition functions. In fact 

for each bosonic degree of freedom and 

for each fermionic one. Then the bosonic (fermionic) free energies are given by 

P- '  In[ 1 - exp( - p w B K  
k 

Now we recall the stability equation associated with 

(14b) 

the bosonic part where an - -  
unavoidable zero-energy mode emerges due to translational invariance [4]. Although 
some results (such as the energy at 'one-loop' order) can be obtained without paying 
any special attention to this zero mode, higher orders appear full of divergences unless 
the zero-energy eigenmode receives a different treatment from the one outlined for the 
'other modes. Passing to the finite-temperature case, we point out the infrared divergence 
which appears in (14a) when w B K  = O .  In order to avoid the problems we introduce 
a 'collective coordinates' treatment. In principle, we take the whole class of classical 
solutions parametrised by x,, the centre-of-mass position of the soliton. Then we 
promote x, in +,(x-x,) to a new quantum variable X ( t ) ,  precisely the 'collective 
coordinate' [4]. In this way we reach an unperturbed Hamiltonian which contains 
only non-zero frequencies. As we are discussing the energy eigenvalues in the P = 0 
frame the 'collective coordinate' method allows us to use a new sum Z' where the 
prime denotes the zero-energy absence. Therefore we find for the global free energy 

F = C ~ ( O ~ ~  - w F K ) + p - '  C ' ~ n [ l - e x p ( - p w , ~ ) ] - ~ - ' C  ~n[ l+exp(-pw,~)] .  (15) 

The first term in (15) is the zero-point energy while the second term represents the 
finite-temperature contributions. In particular, the zero-temperature term admits an 
useful expression in accordance with simple relations between the respective spectral 
densities. Let us define n, (n-) to be the densities of eigenfunctions of the operators 
Q'Q (99'). We suppose a Bogomolny bound which leads to 

k k k 

n, = n, (16) 

whereas the relation between nF and n, reduces to [2] 

nF = f( n, + ne). (17) 
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With these data at hand we can write a more rigorous version of the first quantum 
correction to the mass when T=O, namely 

A M T = O = L l  4 (--- dn+( d E  E )  dn-( d E  E )  ) a d E  

where the eigenvalues associated with the discrete spectrum cancel in a systematic way. 
Resorting now to the general expressions which provide the differences of spectral 

densities, we have [ 5 ]  

1 a+O(E -a : )  a d (  E - a ! )  AM,, ,= l  - 
4 --( 2 r E  ( E - U ; ) " *  

where a, = W " [ ~ , ( X  = *oo)]. Making the change of variable E = k2+ a:, we obtain 

Later on we analyse the 'one-loop' term associated with the central charge. Using 
the shift 4(x )  = 4Jx)  + cp(x), the correction at this order adopts the form 

" d  
- E  dx 

+ A T =  -($Wf'(4,)(cp2(x)))dx. 

Working in the Euclidean frame, we simply recall the discretisation of the bosonic 
k0 component at finite temperature 

ko = 2 m / P .  (22) 
Therefore (21) corresponds to 

with 

u 2  * -  -- P 2  (k2+a:). 
4T2 

Using the fact that 

D( 1, U )  = (T/ U )  coth TU 

we write 

where D(s ,  U )  = E  ( n 2 +  U')-' 
n 

P U-77 
+ A T =  --I (-coth vu+--coth U- r u -  

8 r 2  U+ 

which can be reduced to 

a, exp( - 2 r u + )  -?k lo" (( k2 + a:) ' /2( 1 - exp( -2ru+))  

) dk. 
a- exp( -2.rru-) - 

( k2+  1 - exp( -2ru-))  
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So we have obtained the desired result: a first term which corresponds to the T = 0 
case and a second one including the finite-temperature effects. In particular, the 
Bogomolny saturation at zero temperature is clearly recovered (it suffices to consider 
(20) and ( 2 6 ) ) .  Moreover, this saturation appears as a consequence of the N = i  
supersymmetry which remains when expanding around the classical solution 4Jx) 
[2]. We recall the N = 1 case where the vacuum energy receives no quantum corrections. 
The last possibility considers the finite-temperature situation with automatic breaking 
of SUSY [ 6 ]  and failure of Bogomolny saturation over the soliton. 

Work supported by Comisidn de Investigacidn Cientifico y Ticnica (Spain). 
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